Abstract

Oil agents produced from the degreasing treatment of synthetic fibers are typical pollutants in wastewater from printing and dyeing, which may cause large-scale environmental pollution without proper treatment. Purifying oily dye wastewater (DTY) at a low cost is a key problem at present. In this study, biochar microspheres with oil removal ability were prepared and derived from waste bamboo chips using the hydrothermal method. The structure of the biochar microsphere was regulated by activation and modification processes. Biochar microspheres were characterized, and their adsorption behaviors for oily dye wastewater were explored. The results show that the adsorption efficiency of biochar microspheres for oily dye wastewater (DTY) was improved significantly after secondary pyrolysis and the lauric acid grafting reaction. The maximum COD removal quantity of biochar microspheres for DTY was 889 mg/g with a removal rate of 86.06% in 30 min. In addition, the kinetics showed that chemisorption was the main adsorption manner. Considering the low cost of raw materials, the application of biochar microspheres could decrease the cost of oily wastewater treatment and avoid environmental pollution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.