Abstract

In the field of hard tissue repair, titanium-based materials have excellent mechanical properties and magnesium-based materials have good bioactivity, but their shortcomings are that titanium-based materials do not have good bioactivity, while magnesium-based materials are limited in application due to their rapid degradation rate. In order to give full play to the advantages of these two materials, the TiO2–MgO composite ceramic materials were prepared by combining the two elements and sintering at high temperature. By changing sintering temperature and MgO content, the structure composition and bioactivity of composite ceramic materials can be controlled. The surface morphology, mineralization ability in vitro, cytotoxicity and bone-promoting properties of composite ceramic materials were studied. The experimental results show that high MgO content composite ceramic materials will bring too strong alkalinity to the environment, which will accelerate the mineralization ability of materials, but is not conducive to the survival of cells. Composite ceramic materials with suitable sintering temperature and MgO content have good bioactivity and bone-promoting performance, while the porous structure produced by MgO degradation is beneficial to cell spreading and can form a good combination between the material and bone tissue at an early stage. Porous structure and Mg2+ can adjust the bone-promoting properties of materials together. Through the above experimental research, it is found that TiO2–MgO composite ceramic material is a new type of material which is used in the field of hard tissue repair due to its good bioactivity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.