Abstract

Development of dual functional materials that are capable of both reducing bacterial interaction and encouraging host tissue integration has gained importance in design of biomaterials. In this study, we prepared a bilayer poly (lactide co-glycolide) fibrous membrane with antibacterial and bioactive properties by electrospinning. The antibacterial layer was produced by covalent immobilization of antimicrobial peptide, Magainin II. The bioactive layer incorporating epidermal growth factor (EGF) molecules was subsequently electrospun on the antibacterial layer. The membranes were characterized by X-ray photoelectron spectroscopy, scanning electron microscopy and fluorescence microscopy. EGF release was detected by enzyme-linked immunosorbent assay. The antibacterial activity was tested against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). The ability to support tissue cell integration was detected by using L-929 mouse fibroblasts. The dual functional membranes established enhanced antibacterial properties and increased tissue cell compatibility. This combined approach suggests a promising strategy for wound dressings, vascular grafts and dental membranes as well as catheters and fixation devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.