Abstract

The paper presents study of a new approach to manufacturing carrier implants with a combination of bioactivity, biocompatibility, and mechanical properties, composite powders of hydroxyapatite and titanium with a mass content of 50:50 % when sprayed by gas detonation spraying. Experimental studies of the surface morphology and cross-section microstructure, phase composition and mechanical properties of HATi composite coatings are obtained. The experimental results showed that the cross-section microstructures of HATi composite coatings are typical plate structures comprising curved strips formed by well-deformed and oxidized Ti plates and limited deformed HA plates. Composite coatings’ morphology and phase states were studied using scanning electron microscopy and X-ray diffractometry. It was found that the deprived coatings mainly consist of the phases HA, Ti and TiO. The elemental composition study results designated that the atomic ratio of calcium and phosphorus in the obtained coatings is Ca/P ~ 1.64, which is close to the value of the initial powder — Ca/P ~ 1.67. This indicates a limited change in the chemical composition during the coating formation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.