Abstract

In present work, we prepared the bimetallic Cu-Co nanocatalysts on poly (diallyldimethylammonium chloride) functionalized halloysite nanotubes (Cu-Co/PDDA-HNTs) by a deposition-reduction technique at room temperature. The analysis of XRD, SEM, TEM, HAADF-STEM and XPS were employed to systematically investigate the morphology, particle size, structure and surface properties of the nanocomposite. The results reveal that the PDDA coating with thickness of ∼15nm could be formed on the surface of HNTs, and the existence of PDDA is beneficial to deposit Cu and Co nanoparticles (NPs) with high dispersibility on the surface. While the cost-effective nanocomposite was used for the hydrolytic dehydrogenation of ammonia-borane (NH3BH3), the nanocatalyst showed extraordinary catalytic properties with high total turnover frequency of 30.8molH2/(molmetalmin), low activation energy of 35.15kJmol−1 and high recycling stability (>90% conversion at 10th reuse). These results indicate that the bimetallic Cu-Co nanocatalysts on PDDA functionalized HNTs have particular potential for application in release hydrogen process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call