Abstract

Benzoxazine monomer (named as B-aptes) was synthesized from 3-aminopropyltriethoxysilane (KH-550), bisphenol A (BPA), and paraformaldehyde. Subsequently, functionalized halloysite nanotubes were obtained by introducing B-aptes onto the surface of halloysite nanotubes (HNTs). Then, benzoxazine-modified halloysite nanotubes (B-HNTs) were used to combine with BPA epoxy resin to prepare the diglycidyl ether of bisphenol-A (DGEBA)/B-HNTs composites. The homogeneous dispersion state of modified HNTs in the cured composite matrix was observed by scanning electron microscopy. Differential scanning calorimetry was used to investigate polymerization behaviors of ternary composites. The results showed that the ternary composite possessed lower polymerization temperature compared with the neat DGEBA/benzoxazine. According to the results of thermogravimetric analysis, the thermal stability of DGEBA/benzoxazine copolymers was improved by the modified HNTs, the char yield increased with the increase of HNTs mass ratio. The results of mechanical tests and dynamic mechanical analysis displayed that the DGEBA/B-HNTs composites possessed promoted mechanical properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call