Abstract
Curved crystals, instead of flat mosaic crystals, can be used as optical elements of a Laue lens for hard x- and gamma-ray astronomy to increase the diffraction efficiency. We propose to achieve the bending of the crystals by a controlled surface damaging, which introduces defects in a layer of few tens nanometers in thickness undergoing a highly compressive strain. Several oriented silicon and gallium arsenide wafer crystals have been treated. The local and mean curvature radii of each sample have been determined by means of high resolution x-ray diffraction measurements in Bragg condition at low energy (8 keV). Silicon samples showed spherical curvatures, whereas GaAs-treated samples evidenced elliptical curvatures with major axes corresponding to the 〈110〉 crystallographic directions. Curvature radii between 3 and 70 m were easily obtained in wafers of different thicknesses. The characterization of GaAs samples performed in Laue geometry at gamma-ray energy of 120 keV confirmed the increase of the diffraction efficiency in the bent crystals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.