Abstract

A novel synthetic process for producing aromatic polycarbonate (PC) nanoparticles using supercritical CO2 was developed. The objective of the present research work was to synthesize high molecular weight PC nanoparticles using transesterification between bisphenol-A (BPA) and diphenyl carbonate (DPC) in supercritical CO2 which is an excellent plasticizing agent and a good solvent for phenol, a by-product of the reaction. Poly(propylene oxide)–poly(ethylene oxide)–poly(propylene oxide) tri-block copolymer with CO2-phobic anchor and CO2-philic tail group was used as a stabilizer for the preparation of stable dispersions of BPA–DPC mixture in a CO2 continuous phase. As the reaction was proceeding, phenol formed from the reaction was dissolved and diffused into supercritical CO2 phase. The PC nanoparticles were isolated by simple venting of the supercritical CO2 from the reactor. Spherical morphology of PC particles was confirmed by scanning electron microscopy. Particle size and morphology of PC particles were modified upon variation of the process conditions. The resulting PC particles with a nano-size of 30–140 nm have a high molecular weight (M w) of 3.1×105 (g/mol).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call