Abstract

As a common coal-based solid waste, fly ash is widely used in material filling. However, due to the high resistivity of fly ash itself, the antistatic performance of the filling material is poor. Therefore, antistatic composite powder was prepared by coating nano-sized antimony-doped tin oxide (ATO) on the surface of fly ash, and its preparation mechanism was discussed. The composite powders were characterized by SEM, EDS, XRD and FTIR. The results show that the interaction between SiO2 and SnO2 appears at the wave number of 727.12 cm-1, and the obvious SnO2 crystal phase appears on the surface of fly ash. The volume resistivity of calcined fly ash is 1.72 × 1012 Ω·cm, and the volume resistivity of ATO fly ash is reduced to 6 × 103 Ω·cm. By analyzing the limiting oxygen index, melt index, tensile strength, elongation at break, cross-section morphology and surface electrical resistivity of EVA, it was found that the addition of antistatic powder to EVA can improve its antistatic performance without deteriorating the mechanical properties of EVA.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.