Abstract

In this article, a novel method of applying high voltage (1–5 kV) to the conventional immersion precipitation phase inversion process was used to prepare polyethersulfone ultrafiltration membranes when PVP (30 K) was used as an additive. The effects of the external electric field on the structure, surface functional groups, membrane potential, and surface hydrophilicity of the membranes were researched. Bovine serum albumin (BSA) adsorption amounts on the membranes and the separation performances of the membranes were measured. It was found that the external electric field influenced the surface carbonyl groups, surface hydrophilicity, and potential of the membranes. With the increase of the external voltage, the surface hydrophilicity and the membrane potential decreased. It seemed that the external voltage had no influence on the cross-section structure of the membranes, but the surface porosity density slightly reduced when the external voltage increased. In basic BSA solution, the protein adsorption amount on the electric enhanced membranes was distinctly reduced when compared with an un-enhanced membrane, and the rejection was also improved. Consequently, the prepared electric enhanced PES membranes had distinctive anti-fouling properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.