Abstract

Water-induced parasitic reaction and zinc dendrite growth caused by uneven electric field distribution on the surface of the zinc anode are the most controversial problems in the practical application of zinc-nickel rechargeable batteries in large-scale energy storage. Herein, Bi2O3/In2O3 doped ZnO@C synthesized by MOF pyrolysis with good cycle stability. The ability to inhibit hydrogen evolution and achieve uniform deposition of zinc is characterized by CV, Tafel, and scanning electron microscopy (SEM). Benefiting from the high hydrogen evolution overpotential and high electrical conductivity, Bi2O3 doped ZnO@C (BCZ) and In2O3 doped ZnO@C (ICZ) electrodes deliver high capacity of 640 mA h g−1 and 580 mA h g−1 at 10 C after 1200 and 3400 cycles, respectively, and reveals long-term cyclic stability with capacity retention over 90%. This work provides new ideas for the anode synthesis of aqueous rechargeable zinc metal batteries and other batteries.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call