Abstract
Finding effective methods for simultaneous removal of antibiotics and heavy metals has attracted increasing concern since both of them are frequently detected in aquatic environments. In this study, a novel mesoporous silica adsorbent (Fe-N,N-SBA15) contained dual-functional groups was synthesized by first grafting di-amino groups on SBA15, and then coordinating Fe(III) onto the adsorbent. The adsorbent was then used in the synchronous elimination of tetracycline (TC) and Cu(II) from water, which was deeply studied by solution pH, kinetics, equilibriums in sole and binary systems. It was found that the adsorbent had high affinity for both TC and Cu(II) and synergistic effects on the adsorption were found. The solution pH remarkably affected the adsorption due to pH-dependent speciation of TC, Cu(II), TC–Cu(II) complex and the surface properties of the adsorbent. Increasing adsorption amount of TC and Cu(II) on the adsorbent could be attributed to the formation of complex TC–Cu(II) bridging or the stronger affinity of the adsorbent for the TC–Cu(II) complex than that for TC or Cu(II) separately. FT-IR and XPS studies revealed that Fe(III) and amino groups on the adsorbent were complexed with the amide of TC and Cu(II), respectively. The recyclabilities of the adsorbent were also evaluated and the Fe-N,N-SBA15 exhibited good reusability for TC and Cu(II) removal. This study shows guidelines and offers an innovative, effective method for the synergistic removal of antibiotics and heavy metals from aquatic environments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.