Abstract
It is usually difficult to control the microstructure of mesoporous silica materials using coal fly ash as raw materials. In this study, amidoxime-functionalized mesoporous silica nanospheres (ami-MSN) were prepared from coal fly ash using a novel interfacial cohydrolysis-condensation method in an alkane-aqueous system. Characterizations suggested a regular microstructure, high specific surface area (676 m2/g) as well as stable and uniformly distributed amidoxime groups in the ami-MSN framework. Furthermore, ami-MSN displays a high U(VI) removal capacity in sorption experiments (98.9% removal efficiency of 50 ppm U(VI) at a dosage of 600 mg/L). The sorption showed significant pH dependence. Introducing various cations and anions showed differing effects on sorption, which can be attributed to differing complexation abilities of ions/ami-MSN/U(VI). The sorption mechanism was also studied. In pursuit of the strategy of “treating wastewater with materials derived from waste,” this work suggests that ami-MSN can be an effective and low-cost sorbent for U(VI) removal.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.