Abstract

A novel amidoxime-based fibrous adsorbent, denoted as PE/PP-g-(PAAc-co-PAO), was prepared by pre-irradiation grafting of acrylic acid and acrylonitrile onto polyethylene-coated polypropylene skin–core (PE/PP) fibers using 60Co γ-ray irradiation, followed by amidoximation. The original and modified PE/PP fibers were characterized by a series of characterization methods to demonstrate the attachment of amidoxime groups onto the PE/PP fibers. Breaking strength tests confirmed that the fibrous adsorbent could maintain good mechanical properties. The adsorption capacity of the PE/PP-g-(PAAc-co-PAO) fibers was investigated in simulated seawater with an initial uranium concentration of 330 μg/L. The uranium adsorption capacity was 2.27 mg/g-adsorbent after 24 h in simulated seawater, and the equilibrium data were well described by the Freundlich isotherm model. The PE/PP-g-(PAAc-co-PAO) adsorbent exhibited good regeneration and recyclability during five adsorption–desorption cycles. The adsorption test was also performed in simulated radioactive effluents with uranium concentrations of 10 and 100 μg/L. The effect of the pH value on the adsorption capacity was also studied. At a very low initial concentration 10 μg/L solution, the PE/PP-g-(PAAc-co-PAO) fiber could remove as much as 93.0% of the uranium, and up to 71.2% of the uranium in the simulated radioactive effluent. These results indicated that the PE/PP-g-(PAAc-co-PAO) adsorbent could be used in radioactive effluents over a wide range of pH values. Therefore, the PE/PP-g-(PAAc-co-PAO) fibers, with their high uranium selectivity, good regeneration and recyclability, good mechanical properties, and low cost, are promising adsorbents for extracting uranium from aqueous solutions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call