Abstract
To obtain light, strong materials with high thermal conductivity, a new carbon-based material, AlN ceramic bonded carbon (AlN/CBC), was fabricated by combining gelcasting and spark plasma sintering techniques. The results showed that AlN/CBC (20 vol% AlN) has a unique microstructure containing carbon grains of 15 μm in size and an AlN grain-boundary layer of 0.5–3 μm in thickness. Continuous AlN ceramic networks bonded the carbon grains together. Compared with the conventional AlN/carbon (AlN/C) material made by a ball-milling method, AlN/CBC showed a higher strength and a higher thermal conductivity by two and four times, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.