Abstract

In this study, alginate/vermiculite (Alg/VMT) hydrogel with 3-aminopropyl triethoxysilane (Alg/VSN) and tetraethoxysilane (Alg/VS) synthesized with various concentrations of CaCl2 (10 %–15 %–20 % M) to extend the release of 6-Aminopenicillanic acid (AP). Composites characterized by XRD, FTIR and BET. The result of Alg/VS composite shows an excellent loading of 243.90 mg/g through AP intercalated in the VMT layer. The equilibrium and Kinetic studies indicated that AP adsorption on Alg/VS and Alg/VSN was heterogeneous with chemical interaction. The in-vitro release Alg/VS showed a rapid burst release of 14 % in the first half an hour and only 75 % of the drug remained in the composite. Whereas, the in-vitro release Alg/VSN showed substantially less burst release with the cumulative release of 9 % (in the first 0.5 h). In-vitro release kinetics in the presence of CaCl2 concentrations showed that maximum 19 % of AP released within 12 h. The kinetic release was followed by a controlled release pattern (Korsmeyer-Peppas model) with Fick's law mechanism. The composites behaved as barriers against cell growth and had better biocompatibility against standard strains of Pseudomonas aeruginosa and Methicillin-Resistant Staphylococcus. MTT assay results from per cent cell viability composites modified by silanol groups were 96 % the means samples were nontoxic. The types of newly synthesized composites were able to finely decrease cell toxicity and improve AP release in vitro.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.