Abstract

ABSTRACTIn the present paper, a novel biomass flame retardant based on alginic acid was synthesized through chemical combination with a reactive P–Si compound. Compared with alginates, the modified alginate showed obviously increased thermal stability and water resisting property, as well as better compatibility with epoxy resin, which can satisfy the requirements of a flame‐retardant additive in the polymer. The flame‐retardant properties were evaluated by vertical burning tests, limiting oxygen index, and microscale combustion calorimetry. Due to the self‐charring capacity of alginate combined with the charring catalyst from P and the charring reinforcer from Si, the modified alginate exhibited much better flame retardancy, taking advantage of the formation of a more continuous, denser, and strengthened char layer than either individual alginate or P–Si flame retardant. The corresponding flame‐retardant mechanisms were investigated and discussed. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017, 134, 45552.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.