Abstract

AbstractBACKGROUND: Micellar systems are widely applied as reactors to encapsulate inorganic nanoparticles in polymeric materials. However, only low inorganic contents and microscale dimensions are often achieved.RESULTS: The adsorption of albumin protein on ferrite nanoparticles permits to increase the stability of inorganic dispersions in water by inhibiting particle flocculation. Subsequent glutaraldehyde addition induces protein crosslinking and ferrite entrapment. Polymer–ferrite composite nanoparticles were obtained in this way. The magnetic albumin nanoparticles (25 nm mean diameter) obtained contain about 40 wt% of ferrite and show superparamagnetic behaviour. The composite powder was successfully functionalized with a model drug and the biological activity was evaluated.CONCLUSION: Using a reverse micelle approach, ferrite–albumin composite nanoparticles with a high inorganic content were obtained. The method permits the formulation of biocompatible magnetic particles of nanoscale dimensions. The exhibited superparamagnetic behaviour permits to hypothesize an application of the powder composite as a carrier in biomedical technologies. Copyright © 2009 Society of Chemical Industry

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.