Abstract

Spatial-network Al2O3–ZrO2–Y2O3 composite coatings were prepared by a modified sol–gel technique, so-called thermal pressure and filtration of sol–gel paint. The composite coatings were derived from a composite paint of yttria partially stabilized zirconia (YSZ) particles, Al2O3 particles and Al2O3–Y2O3 sol. Their microstructure showed that YSZ particles were covered with spatial-network Al2O3–Y2O3 blanket. Cyclic oxidation at 1,050 °C in air for 200 h demonstrates that the oxygen diffusion rate in the coatings could be effectively inhibited. Meanwhile, suitable coefficients of thermal expansion (CTE) gave the composite coatings better spallation resistance than that of Al2O3–Y2O3 or ZrO2–Y2O3 coatings. The positive results of cyclic oxidation indicated that the composite coating can be used as an interlayer between the bond coat and the top ceramic layer in traditional TBCs. Not only the depletion rate of aluminum-rich phase in MCrAlY alloy could be slowed down by spatial-network Al2O3–Y2O3, but also different thermal expansion between thermally grown oxides layer and top layer could be relieved by suitable CTE. In this paper, the mechanisms of the inhibition of oxygen diffusion and thermal match between ceramic coating and alloy are also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.