Abstract

Mercury is a toxic heavy metal that reaches to the water bodies mainly by coal burning, mining and petrol refining. The study was focused to investigate the application of Ag-cellulose nanocomposite to detect and quantify mercury colorimetrically. The Ag-cellulose nanocomposite was characterized by X-ray diffraction, Transmission electron microscopy, Fourier transform infrared spectroscopy, UV–visible spectroscopy, particle size analyzer and zetasizer. The study identified that the presence of other metal ions did not interfere with the detection of Hg2+ ion by the probe. The prepared Ag-cellulose nanocomposite-phenylalanine conjugate incorporated paper strip showed an excellent result in Hg2+ detection. The Ag-cellulose nanocomposite was used to quantify the unknown concentration of mercury on real sample (environmental sample) and it was found to be highly accurate by confirming with atomic absorption spectrophotometric analysis. The Ag-cellulose nanocomposite showed effective detection at 45 °C, pH 9 and 0.1% of salinity. The Ag-cellulose nanocomposite showed efficient photocatalytic performance under visible light irradiation. The half-life period of MB by Ag-cellulose nanocomposite under visible light was determined to be 90 min. The study suggests the application of prepared probe in photocatalysis and the detection of Hg2+ from various environmental samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.