Abstract

With the development of hydrogen energy, palladium-based membranes have been widely used in hydrogen separation and purification. However, the poor chemical stability of palladium composite membranes limits their commercial applications. In this study, a zeolite-palladium composite membrane with sandwich-like structure was obtained by using a TS-1 zeolite film grown on the surface of palladium membrane. The membrane microstructure was characterized by SEM and EDX. The effects of the the TS-1 film on the hydrogen permeability and stability of palladium composite membrane were investigated in details. Benefited from the protection of the TS-1 zeolite film, the stability of palladium composite membrane was enhanced. The results indicate that the TS-1-Pd composite membrane was stable after 8 cycles of the temperature exchanging cycles between 773 K and 623 K. Especially, the loss of hydrogen permeance for TS-1-Pd composite membrane was much smaller than that of the pure palladium membrane when the membrane was tested in the presence of C3H6 atmosphere. It indicated that the TS-1-Pd composite membrane had better chemical stability in comparison with pure palladium membrane, owing to its sandwich-like structure. This work provides an efficient way for the deposition of zeolite film on palladium membrane to enhance the membrane stability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call