Abstract
In this study, a new type of porous PbO2-CNTs electrode was prepared by the oxygen bubble template method to remove the organic pollutant p-nitrophenol in water. The electrode microscopic morphology, phase composition and element composition were characterized by physical methods such as scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS). According to linear scanning voltammetry (LSV), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS), the 3D-PbO2-CNTs composite electrode shows a higher exchange current density, larger electrochemically active surface area and smaller charge transfer resistance than the 3D-PbO2 and flat-PbO2-CNT electrodes. The 3D-PbO2-CNTs composite electrode was applied to the degradation of p-nitrophenol, and the results indicate that it has the strongest ability to generate hydroxyl radicals and the best electrocatalytic degradation efficiency. The degradation process follows pseudo-first-order reaction kinetics, and the intermediate products were characterized using GC–MS and a degradation mechanism for p-nitrophenol was proposed. From measurements of the cell voltage for degrading simulated phenolic wastewater, it was found that the battery voltage for the 3D-PbO2-CNTs composite electrode is 3.52 V, which is lower than that obtained for the 3D-PbO2 (3.59 V) and flat-PbO2-CNTs (3.85 V) electrodes, indicating that the anode material is effective in reducing energy consumption. In general, the new 3D-PbO2-CNTs electrode has good application prospects in the field of degrading organic polluted wastewater.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.