Abstract

Because of the widespread presence of antibiotics in water, soil, and other environments, they pose great potential risks to the environment, threatening human and animal health. In this study, graphene oxide-kaolinite homogeneous dispersion was prepared by simple liquid phase exfoliation. The three-dimensional (3D) porous graphene oxide-kaolinite-poly(vinyl alcohol) composites were prepared by the cross-linking of poly(vinyl alcohol) and the formation of ice crystals during the freezing-drying process. Three influencing factors [adsorbent dosage, ciprofloxacin (CIP) initial concentration, and time] of CIP adsorption and removal were systematically analyzed by the response surface method. The order of significance for response values (CIP removal rate) was adsorbent dosage > CIP initial concentration > time. The 3D porous material showed good adsorption capacity of CIP, the theoretical maximum adsorption capacity was 408.16 mg/g, and it had good recyclability. By Fourier transform infrared (FTIR) and X-ray photoelectron spectroscopy analysis, it was found the composite adsorbs CIP by hydrogen bonding and π-π interaction. In conclusion, the graphene oxide-kaolinite-poly(vinyl alcohol) porous composite is a good candidate for efficient antibiotic wastewater treatment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.