Abstract

Blackberries provide multiple health benefits. However, they deteriorate easily during harvesting, storage, and transportation (temperature-changing). Therefore, to extend their shelf-life under variable temperature conditions, a temperature-sensitive nanofibre-based material with good preservation attributes was developed, composed of polylactic acid (PLA) electrospun fibres, loaded with lemon essential oil (LEO) and covered with poly (N-isopropylacrylamide) (PNIPAAm). Compared with PLA and PLA/LEO nanofibres, PLA/LEO/PNIPAAm exhibited good mechanical properties, oxidation resistance, antibacterial ability, and controlled release of LEO. The PNIPAAm layer prevented rapid LEO release below the low critical solution temperature (32 °C). When the temperature exceeded 32 °C, the PNIPAAm layer underwent a chain-to-globule transition and accelerated LEO release (slower than PLA/LEO). The temperature-controlled release of LEO via PLA/LEO/PNIPAAm membrane prolongs its action time. Therefore, PLA/LEO/PNIPAAm effectively maintained the appearance and nutritive quality of blackberries during variable storage temperatures. Our research demonstrated that active fibre membranes have great potential applications in preserving fresh products.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call