Abstract

Ni is widely used in the field of corrosion protection because of its stability, hardness, and ductility. Inspired by the excellent hydrophobicity of walnut wood, imparted by its porous structure, we synthesized a morph-genetic, porous Ni sheet. A pyrolyzed walnut template was immersed in a Ni2+ solution, allowing Ni to be electroplated on the surface and to enter the skeleton’s pores. After calcination and surface modification, a template-free, low-surface-energy Ni sheet was obtained and accurately investigated by scanning electron microscopy and contact angle goniometry to evaluate its morphology and hydrophobicity. The results show that the Ni sheet inherited the complementary structure of the template, and, in turn, its water-repelling ability. We were able to measure contact angles as large as 150°, demonstrating that the new surface morphology endowed Ni with superhydrophobicity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.