Abstract
Hot-melt extrusion (HME) has gained increasing attention in the pharmaceutical industry; however, its potential in the preparation of solid self-emulsifying drug delivery systems (S-SMEDDS) is still unexplored. This study sought to prepare enteric S-SMEDDS by HME and evaluate the effects of the process and formulation variables on S-SMEDDS properties via Box-Behnken design. Liquid SMEDDS were developed, and carvedilol was used as a class II model drug. Mean size, polydispersity index (PdI) and zeta potential of the resulting microemulsions were determined. The extrudates were then obtained by blending the lipid mixture and HPMCAS using a twin-screw hot-melt extruder. SEM, optical microscopy and PXRD were used to characterize the extrudates. In vitro microemulsion reconstitution and drug release were also studied. L-SMEDDS gave rise to microemulsions with low mean size, PdI and zeta potential (140.04 ± 7.22 nm, 0.219 ± 0.011 and −9.77 ± 0.86 mV). S-SMEDDS were successfully prepared by HME, and an HMPCAS matrix was able to avoid microemulsion reconstitution and retain drug release in pH 1.2 (12.97%–25.54%). Conversely, microemulsion reconstitution and drug release were gradual in pH 6.8 and complete for some formulations. Extrudates prepared at the lowest drug concentration and highest temperature and recirculation time promoted a complete and rapid drug release in pH 6.8 giving rise to small and uniform microemulsion droplets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.