Abstract

In this work, a novel and sustainable biosorbent, regenerated silk fibroin film (rSFF) was successfully prepared and its adsorbability to azo dyes (acid yellow 11, naphthol orange and direct orange S) was measured. At optimal conditions, the adsorption capacity of rSFF for acid yellow 11 reached up to 59.71mg/g, which was 1.23-fold higher than that of raw silk fibroin fibers. More importantly, rSFF exhibited a high level of flexibility and functionality as well as a good shaping ability, which were crucial for its practical application. The SEM results showed that rSFF was a porous material, indicating that it had more available adsorption sites compared with raw silk fibroin fibers, which might contribute to the higher adsorption capacity of rSFF. Isotherm equilibrium studies revealed that the azo dye adsorption process followed the Langmuir model, indicating that rSFF was a structurally homogenous adsorbent. The recycle test showed that rSFF had potential to be reused in a number of treatment cycles. After five cycles, its adsorbability to acid yellow 11 remained as high as 47.20mg/g. Finally, a scale-up experiment was performed for rSFF, and the results indicated that it was feasible for rSFF to extend the practical application.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call