Abstract

Polycarboxylate superplasticizers (PCEs) are indispensable functional ingredients in modern construction, and their usage is extensive. Herein, a polyether macromonomer (VPEG) with high reactivity was used to prepare VAPCEs with different interfacial adsorption properties (acid-ether ratio) at low temperatures and reacted in 30 min. The effects of various VAPCEs on the fluidity, rheology, and strength of cement were investigated with a w/c (water/cement) ratio of 0.35. Results showed that VAPCE-3 (acid-ether ratio is 3) exhibited the best dispersion, and the fluidity of cement slurry with VAPCE-3 (280 mm) is 278.38% higher than that of the control sample (74 mm). The reason is summarized as VAPCE-3 having good adsorption performance on the surface of cement particles and having a large steric hindrance between particles. The compressive strength of cement with VAPCE-3 was enhanced by 8.29% compared with pure cement in 3 days of curing age due to its densification on microstructure and lowest R orientation index of calcium hydroxide. With the amount of acrylic acid in VAPCE increasing, the flexural strength enhanced because a more cross-linking network was formed with Ca2+ in cement with the increase of COO- content in VAPCEs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call