Abstract

Pitch based activated carbons (PAC) with a high specific surface area were produced by a direct chemical activation route in which oxidative stabilized pitch derived from ethylene tar oil was reacted with potassium hydroxide under various activation conditions. It was found that PACs with a surface area of around 2600–3600 m2 g-1 could be obtained under suitable activation conditions. N2 adsorption (at 77 K) and X-ray photoelectron spectroscopy experiments showed that the PAC has a uniformly developed micropore structure and a narrow pore size distribution (radius 0.8–1.6 nm). Abundant oxygen-containing functional groups (such as C–OH, C–O–C, C=O, COOR etc.) were found to exist on its surface. Compared with a commercially available activated carbon (AC) and also a pitch based activated carbon fibre, PAC has a quicker adsorption–desorption velocity and a larger adsorptive capacity to benzene due to its higher surface area. Clear surface differences between PAC and AC were observed by transmission electron microscopy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.