Abstract

A high wear-resistant gradient coating made of Ni/Co-based alloys on the surface of a Cu alloy substrate was synthesized using a YAG laser induced in situ reaction method. The coating consists of three layers: the first is a Ni-based alloy layer, the second and third are Co-based alloy layers. The microhardness increases gradually from 98HV in the Cu alloy substrate to the highest level of 876HV in the third layer. The main phase of the Co-based alloy layer is CoCr2(Ni,O)4, coexisting with the Fe13Mo2B5, Cr(Co(Mo, and FeCr0.29Ni0.16C0.06 phases. Wear tests indicate that the gradient coating has good bond strength and wear properties with a wear coefficient of 0.31 (0.50 for the Cu alloy substrate). Also, the wear loss of the coating is only 0.01g after it has been abraded for 60min, which is only one fifth of that of the Cu alloy of the crystallizer. Wear tests of the gradient coating reveal good adhesive friction and wear properties when sliding against steel under dry conditions. This novel technique may have good application to make an advanced coating on the surface of the Cu alloy crystallizer in a continuous casting process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.