Abstract
We describe a drug delivery system based on a physically cross-linked poly(vinyl alcohol) (PVA) hydrogel for the release of Theophylline (TH). A composite was created by freezing an aqueous solution of PVA/NaOH onto a PVA/poly(acrylic acid) substrate. This formed a strong interface and demonstrated greater physical strength than the hydrogel alone. Such systems have potential for a variety of localised controlled drug delivery applications, for example, as coatings for implantable devices. Importantly, the results suggest that a versatile synthetic platform is possible that may provide different functional materials or combination of such. The resultant samples were characterised using optical microscopy, modulated differential scanning calorimetry (MDSC) and dissolution testing. The microstructure of the gels was examined using micro-thermal analysis (μTA) which is a combination of atomic force microscopy and thermal analysis. TH was found to have an effect on the crystalline structure and dissolution showed a Fickian release, suggesting that swelling and crystallinity were the controlling mechanisms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: European Journal of Pharmaceutics and Biopharmaceutics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.