Abstract

Given the important role of carboxylesterase 2 (CES2) in the metabolism of various esters, it is of significance to develop a tool to determine endogenous CES2 activity in a rapid and highly selective manner. In this work, an "off-on" rhodamine-based fluorescent probe is reported as an effective tool for CES2 activity. Based on the substrate recognition preference of CES2 (large alcohol and small acyl groups), the probe with dimethyl carbamate as the recognition group performs well in terms of selectivity and sensitivity to CES2. The fluorescence switching control of the probe for CES2 was achieved by using the spirolactone structure of rhodamine. The probe shows the fast generation of a fluorescence signal at 634 nm upon hydrolysis of CES2 with excitation at 578 nm. The results showed a linear relationship between the fluorescence intensity at 634 nm and the CES2 activity from 0 to 4 μg/mL. The probe reacts rapidly with CES2, and the reaction is stable within 40 minutes. The probe is highly selective for CES2, with a detection limit as low as 0.303 μg/mL. In addition, the probe has currently been successfully utilized to evaluate CES2 activity in living cells. Hence, this probe is anticipated to be significant in identifying endogenous CES2 activity in intricate biological settings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.