Abstract

Iron oxide (Fe2O3) was doped onto fullerene[60] (C60) to form a C60-Fe2O3 composite using an easy and scalable impregnation method. The as-prepared C60-Fe2O3 samples were characterized by powder X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, high-resolution transmission electron microscopy, UV-vis absorption spectroscopy, Raman spectroscopy, and Fourier transform infrared spectroscopy. The photocatalytic activity of the C60-Fe2O3 catalyst was evaluated by examining the degradation of methylene blue (MB), rhodamine B (RhB), methyl orange (MO), and phenol under visible light (λ > 420 nm) in the presence of hydrogen peroxide. The results showed that the catalyst exhibited excellent catalytic properties over a wide pH range 3.06–10.34. Under optimal conditions, 98.9% discoloration and 71% mineralization of MB were achieved in 80 min. Leaching test results indicated that the leaching of iron from the catalyst was negligible and that the catalyst had a high photocatalytic activity after five reaction cycles. The catalyst was also efficient in the degradation of RhB, MO, and phenol. These findings could be attributed to the synergetic effects of C60 and Fe2O3. We used active species trapping experiments to determine the main active oxidant in the photocatalytic reaction process and found that hydroxyl radicals played a major role in the entire process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call