Abstract

The depletion of limited petroleum resources used for the fabrication of epoxy resins calls for the development of biomass-based epoxides as promising alternatives to petroleum-derived epoxides. However, it is challenging to obtain an epoxy resin with both high lignin content and excellent mechanical performance. Herein, a 4-dimethylaminopyridine (DMAP)-lignin epoxide with a certain epoxy value and a small molecular weight is obtained by the catalysis of DMAP for the macromolecular lignin. It was discovered that compared to the prepared composite resin of benzyltriethylammonium chloride (BTEAC)-lignin epoxide, there is a better low-temperature storage modulus for the DMAP-lignin epoxide resin and its composite resins with high-biomass contents, and higher tensile strength for its composite resins. In particular, the DMAP-lignin epoxide/ bisphenol A diglycidyl ether (BADGE) (DB) composite resin with DMAP-lignin epoxide replacement of 80 wt% BADGE, containing up to 58.0 wt% the lignin epoxide, exhibits the tensile strength of 76.3 ± 3.2 MPa. Its tensile strength is 110.2% of BTEAC-lignin epoxide/BADGE (BB) composite resins and is comparable to that of petroleum-based epoxy resins. There are good application prospects for the DB composite resin in the engineering plastics, functional composite, grouting, and other fields.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call