Abstract
This paper reports the preparation of a novel, silica-based, strong anion-exchange stationary phase from a 1,4-diazacyclohexane derivative. To prepare the difunctional strong anion-exchange stationary phase, activated silica beads were first bonded with 3-chloropropyltriethoxysilane and then reacted with 1-methylpiperazine followed by benzyl chloride. The silica beads, the strong anion-exchange stationary phase and its precusors were instrumentally characterized. Aromatic acids were separated with non-aqueous anion-exchange chromatography. After elution with eluant prepared in mixed solvents of water and methanol, the resulting 1,4-diazacyclohexane-derived, difunctional, strong anion-exchange stationary phase exhibited good separation and selectivity for the aromatic acids investigated. The effects of eluant pH, eluant ion concentration and solvent composites on the separations were investigated. Organic acids with different substituents were eluted in order of decreasing dissociation coefficients, with no observable peak shape differences.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.