Abstract

A dense defect-free alumina cutting tool was fabricated via stereolithography process. Different drying processes and debinding profiles were then tested and compared to find the optimal way for the preparation of the sintered body. The experimental results showed that using PEG400 as a liquid desiccant results in a lower deformation of the body compared to the natural drying process. Compared with vacuum debinding or air debinding, a two-step debinding process, which consisted of both a vacuum pyrolysis step and the following air debinding, is allowed to control the pyrolysis rate while suppressing the formation of defects in the alumina body. After optimization of the postprocessing, the relative density of the sample as high as 99.3%, and the Vickers hardness ∼17.5GPa. These properties are similar to the properties of alumina bodies prepared via the conventional shaping method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.