Abstract

A novel ionic liquid-impregnated metal-organic-framework (IL@NH2-MIL-101) was prepared and introduced into sulfonated poly(arylene ether ketone) with pendent carboxyl groups (SPAEK) as the nanofiller for achieving hybrid proton exchange membranes. The nanofiller was anchored in the polymeric matrix by the formation of amido linkage between the pendent carboxyl group attached to the molecule chain of SPAEK and amino group belonging to the inorganic framework, thus leading to the enhancement in mechanical properties and dimensional stability. Besides, the hybrid membrane (IL@MOF-1) exhibits an enhanced proton conductivity up to 0.184 S·cm-1 because of the incorporation of ionic liquid in the nanocages of NH2-MIL-101. Moreover, the special structure of NH2-MIL-101 contributes to a low leakage of ionic liquid so as to retain the stable proton conductivity of hybrid membranes under fully hydrated conditions. Furthermore, as a result of a cross-linked structure formed by inorganic nanofiller, the IL@MOF-1 hybrid membrane shows a lower methanol permeability (7.53 × 10-7 cm2 s-1) and superior selectivity (2.44 × 105 S s cm-3) than the pristine SPAEK membrane. Especially, IL@MOF-1 performs high single-cell efficiency with a peak power density of 37.5 mW cm-2, almost 2.3-fold to SPAEK. Electrochemical impedance spectroscopy and scanning electron microscopy indicated that the nanofiller not only contributed to faster proton transfer but also resulted in a tighter bond between the membrane and catalyst. Therefore, the incorporation of IL@NH2-MIL-101 to prepare the hybrid membrane is proven to be suitable for application in direct methanol fuel cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call