Abstract

Cartilage is an inconvenient tissue for the isolation of mRNA, and this has hampered studies of its component mRNAs conducted to date. Here, we describe the preparation of a good quality cDNA library from mouse growth cartilage (mGC). A total of 1.7 microg of poly(A)+ RNA was obtained from about 1200 pieces of the mGC zone of 60 young mice (BALB/c, 4 weeks old). Using this poly(A)+ RNA, we constructed a cDNA library using the pAP3neo vector by the linker-primer method. The complexity of the cDNA library was 2.6 x 106 colony-forming units (cfu), which signified that almost all of the mRNA components in the mGC were present in this cDNA library. From this library, 1401 clones were randomly selected and their insert sizes were examined. Of these clones, 166 (12%) had no inserts, 466 (33%) had inserts ranging in size from 0-0.9 kbp, 480 (34%) had inserts of 1. 0-1.9 kbp, 162 (12%) had inserts of 2.0-2.9 kbp, and 127 (9%) had sizes greater than 3.0 kbp. The average insert size was 1.45 kbp. The number of cfu and the insert size data qualified this library as of reasonably good quality. Clones with an insert size greater than 1 kbp (769 clones) were sequenced from their 5' ends. Among the 769 clones examined, 608 gave sequence data. Among these, 196 (32%) were unknown, 2 were only poly A, and 410 (67%) coded for known proteins. Of these, 55 clones coded for type II (pro)collagen, 54 for osteonectin, and 22 for other cartilage collagens (type IX, type X, and type XI). The rest included cartilage extracellular matrix genes, general cellular genes, and others. To judge further the quality of the library, 45 species coding for type II collagen chain were aligned based on their 5' end sequences. Three species (7%) contained almost the full-length insert, and the shortest one was 1. 5 kbp in length (full-length 5.6 kbp). These data show that this cDNA library is of reasonably good quality, making it likely that the large number of unknown inserts (32%) will provide a suitable pool for the identification and functional determination of new GC genes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.