Abstract

AbstractCaO nanoparticles (NP) were synthesized through solution combustion using crude glycerin (biodiesel by‐product) as the combustion fuel. The synthesized CaO NP were characterized using Fourier transform infrared spectrometer (FTIR), X‐ray diffractometer (XRD), temperature programmed desorption of carbon dioxide (CO2‐TPD), scanning electron microscope (SEM), and transmission electron microscope (TEM). The CaO NP were successfully used as a catalyst for biodiesel synthesis. Response surface methodology was used to determine the optimal conditions for biodiesel production from Butea monosperma oil (BMO) using central composite design. A total of 20 experiments were designed and conducted to study the effects of the methanol to BMO molar ratio, reaction time, and catalyst loading conditions on the biodiesel yield. A yield of 96.2% of Butea monosperma methyl ester (BMME or biodiesel) was obtained under optimum conditions, namely a molar ratio (methanol to BMO) of 9:1, a reaction time of 70 min, a catalyst loading of 1.60 wt%, a constant temperature of 65 °C, and an agitation speed of 600 rpm. The fatty‐acid composition of BMO was characterized through gas chromatography. Finally, BMME was characterized using FTIR, 1H NMR, and 13C NMR, and the fuel properties of BMME were determined using the test methods of the American Society for Testing and Materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.