Abstract
A novel plasmonic Bi12O15Cl6@W18O49@g-C3N4/PDI photocatalyst with dual charge transfer paths was prepared via a solvothermal method using W18O49 nanowires grown on Bi12O15Cl6 nanosheets, followed by loading graphitic carbon nitride/ pyromellitic acid dianhydride (g-C3N4/PDI) onto the resulting Bi12O15Cl6@W18O49 via simple calcination. The heterojunction displayed outstanding photocatalytic performance in the degradation of bisphenol A (BPA) under simulated sunlight illumination, achieving an efficiency of 100% with respect to the removal of BPA (10 ppm) within 30 min. The results of five recycling experiments and an X-ray diffraction analysis before and after degradation showed that the photocatalyst had a relatively stable structure and properties. The investigation of the mechanism regarding the enhanced activity of the plasmonic photocatalyst revealed that dual charge transfer paths and the localized surface plasma resonance effect significantly improved the photogenerated electron transport efficiency and light absorption capacity of the Bi12O15Cl6@W18O49@g-C3N4/PDI composite, which can effectively activate molecular oxygen, producing superoxide radicals and hydroxyl radicals. This study provides a novel platform for the application of the localized surface plasmon resonance effect in photocatalysis via the development of a photocatalyst with dual charge transfer paths.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.