Abstract
Three-dimensionally ordered macroporous (3DOM) tungsten(VI) oxide (WO3) was prepared using a colloidal crystal template method. Well-ordered 3DOM WO3 was prepared with a high pore fraction using ammonium metatungstate ((NH4)6H2W12O40), a Keggin-type dodecatungstate, as a tungsten precursor; WO3 materials prepared by other commercially available W precursors, tungsten chloride (WCl6), tungsten(V) ethoxide (W(OEt)5), and phosphotungstic acid (H3PW12O40), have a low 3DOM pore fraction. These WO3 materials were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), electron diffraction (ED), powder X-ray diffraction (XRD), Brunauer–Emmet–Teller (BET) analysis of nitrogen adsorption isotherm, and Raman spectroscopy. Non-porous WO3 prepared from ammonium metatungstate without a poly(methyl metacrylate) (PMMA) template grew to crystal sizes of up to several micrometres with a low specific surface area (ca. 1–2 m2 g−1). In the presence of a colloidal crystal template of PMMA spheres, WO3 crystal grew in the nanometre-sized voids between the PMMA spheres, and the specific surface area thus increased up to ca. 30 times compared to non-porous WO3. The surface area is tunable by changing the PMMA sphere diameter. Calcination of the 3DOM WO3 produced WO3 nano-crystalline particles by sintering-induced disassembly. After Pt-loading, these WO3 materials showed higher photocatalytic activity compared to non-porous WO3 for decomposition of acetic acid in air under visible light irradiation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.