Abstract

AbstractMnO2/polyaniline/graphene composite as a supercapacitor electrode material was synthesized through an interfacial polymerization approach in the interface of oil/water phase. The as‐synthesized MPG is characterized by infrared spectroscopy, XRD, XPS, SEM and TEM, and its electrochemical performance is measured by cyclic voltammetry, galvanostatic charge/discharge, and electrochemical impedance spectroscopy. The 3D nanostructure of MPG and loose nanorod structure of polyaniline (PANI) coated with round MnO2 pellets could be clearly observed. The maximum energy density of MPG is 45.4 Wh/kg (at a power density of 67.8 kW/kg) and the highest power density is 229.2 kW/kg (at an energy density of 25.7 Wh/kg). The capacitance retentions after 500 cycles at the scan rate of 5 mV/s for MGP composite and PANI/graphene are 70.4% and 59.1%, respectively, and the capacitance values after 500 cycles are 158.4 F/g and 114.8 F/g, respectively. The improved performance of MPG is due to the 3D nanostructure, loose nanorod structure of PANI and stable support of graphene, which prevent the mechanical deformation effectively during the fast charge/discharge process and facilitate the diffusion of the electrolyte ions into the inner region of active materials. The composite material is very promising for the next generation of high‐performance supercapacitors electrode.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.