Abstract

Historically, most cellular processes have been studied in only 2 dimensions. While these studies have been informative about general cell signaling mechanisms, they neglect important cellular cues received from the structural and mechanical properties of the local microenvironment and extracellular matrix (ECM). To understand how cells interact within a physiological ECM, it is important to study them in the context of 3 dimensional assays. Cell migration, cell differentiation, and cell proliferation are only a few processes that have been shown to be impacted by local changes in the mechanical properties of a 3-dimensional ECM. Collagen I, a core fibrillar component of the ECM, is more than a simple structural element of a tissue. Under normal conditions, mechanical cues from the collagen network direct morphogenesis and maintain cellular structures. In diseased microenvironments, such as the tumor microenvironment, the collagen network is often dramatically remodeled, demonstrating altered composition, enhanced deposition and altered fiber organization. In breast cancer, the degree of fiber alignment is important, as an increase in aligned fibers perpendicular to the tumor boundary has been correlated to poorer patient prognosis(1). Aligned collagen matrices result in increased dissemination of tumor cells via persistent migration(2,3). The following is a simple protocol for embedding cells within a 3-dimensional, fibrillar collagen hydrogel. This protocol is readily adaptable to many platforms, and can reproducibly generate both aligned and random collagen matrices for investigation of cell migration, cell division, and other cellular processes in a tunable, 3-dimensional, physiological microenvironment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call