Abstract

The first pi-allyl complexes of CuIII have been prepared and characterized by using rapid injection nuclear magnetic resonance spectroscopy (RI-NMR). The prototype, (eta3-allyl)dimethylcopper(III), was prepared by injection of allyl chloride into a THF-d8 solution of iodo-Gilman reagent, Me2CuLi.LiI (A), spinning in the probe of an NMR spectrometer at -100 degreesC. A sigma-allyl ate complex, lithium (eta1-allyl)trimethylcuprate(III), was prepared in high yield by including 1 equiv of tributylphosphine in the reaction mixture or by using allyl acetate as the substrate. Cyano ate complex, lithium cis-(eta1-allyl)cyanodimethylcuprate(III) was obtained in high yield by injecting allyl chloride or allyl acetate into the cyano-Gilman reagent, Me2CuLi.LiCN (B), in THF-d8 at -100 degrees C. Reactions of A with allylic substrates show a definite dependence on leaving group (chloride vs acetate), whereas those of B do not. Moreover, these reagents have different regioselectivities, which in the case of A vary with temperature. Finally, the exclusive formation of cis-cyano sigma-allyl CuIII intermediates in both the 1,4-addition of B to alpha-enones and its SN2alpha reaction with allylic substrates now makes sense in terms of pi-allyl intermediates in both cases, thus unifying the mechanisms of these two kinds of conjugate addition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call