Abstract

Series sorbents of Cu, Zn, Ni, Ce and Ag metal components supported on γ-Al2O3 carrier for removing thiophene from benzene were prepared by conventional and ultrasound-assisted incipient-wetness impregnation method. The static adsorption experiments were carried out in the thiophene-benzene solution with thiophene concentration of 500 mg/L. The results show that the desulfurization activity of all γ-Al2O3 sorbents modified by different metal components obviously increase, among which the sorbent modified by silver nitrate has the best performance. The active components of sorbents from Cu, Zn, Ni, Ce nitrates loaded on γ-Al2O3 carrier are their oxides. Besides Ag2O, the products of silver nitrate thermal decomposition in sorbent prepared still have Ag0 and Ag–O–Al species. The assistant ultrasound in the process of sorbent preparation can not only shorten the impregnation time, but also enrich the pore structure of sorbent and improve the size and distribution of the Ag species, which is favorable to the removal of thiophene from benzene. The desulfurization capacity of sorbent changes with the Ag content loaded. The sorbent with 15 % quality content of Ag prepared by ultrasound-assisted impregnation method has the highest desulfurization efficiency. It could reduce the thiophene concentration to 1.7 mg/L from 500 mg/L at room temperature and ambient pressure, with the desulfurization efficiency of more than 99 %, when the ratio of sorbent to solution was 1:4 (g/mL).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.