Abstract

Sn-Co-C alloy as a promising anode material was prepared via a facile carbothermal reduction method, using both graphite and sucrose as the composited carbon sources. The effect of the combination pattern of graphite and sucrose on the microstructure and electrochemical performances of the alloys was investigated using X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and galvanostatic cycling tests. Compared with the Sn-Co-C samples using only graphite or sucrose as the carbon sources, the sample using the composited carbon sources has a relative higher reversible capacity and better rate capability, which is probably related to the continuous and stable conductive network formed by graphite and amorphous carbon originated from the thermal decomposition of sucrose, as well as the small particle size and uniform distribution in the conductive network.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.