Abstract

AbstractIn the current study a new biodegradable nanocomposite based on poly hexamethylene carbonate fumarate (PHMCF) and nano‐sized hydroxyapatite (nano‐HA) has been developed. A silane coupling agent γ‐methacryloxypropyltrimethoxy silane, was used to achieve a good interfacial adhesion between nano‐HA and PHMCF matrix. PHMCF with different nano‐HA contents were characterized using dynamical mechanical thermal analysis (DMTA) and hardness test. The effect of frequency on storage modulus, glass transition temperature (Tg) and the damping were investigated. In vitro cytotoxicity and proliferation were performed using G292 cell lines by MTT assay. The addition of nano‐HA resulted in an increment on the storage modulus and decrement on the damping. Along with improvement in mechanical properties of composites, the addition of nano‐HA resulted in enhanced cell proliferation. Following these results, the newly developed nano‐PHMCF composite scaffold may be considered for bone tissue engineering applications. Copyright © 2009 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.