Abstract
Biochar is a low-cost, porous, and carbon-rich material and it exhibits a great potential as an adsorbent and a supporting matrix due to its high surface activity, high specific surface area, and high ion exchange capacity. Metal nanomaterials are nanometer-sized solid particles which have high reactivity, high surface area, and high surface energy. Owing to their aggregation and passivation, metal nanomaterials will lose excellent physiochemical properties. Carbon-enriched biochar can be applied to overcome these drawbacks of metal nanomaterials. Combining the advantages of biochar and metal nanomaterials, supporting metal nanomaterials on porous and stable biochar creates a new biochar-supported metal nanoparticles (MNPs@BC). Therefore, MNPs@BC can be used to design the properties of metal nanoparticles, stabilize the anchored metal nanoparticles, and facilitate the catalytic/redox reactions at the biochar-metal interfaces, which maximizes the efficiency of biochar and metal nanoparticles in environmental application. This work detailedly reviews the synthesis methods of MNPs@BC and the effects of preparation conditions on the properties of MNPs@BC during the preparation processes. The characterization methods of MNPs@BC, the removal/remediation performance of MNPs@BC for organic contaminants, heavy metals and other inorganic contaminants in water and soil, and the effect of MNPs@BC properties on the remediation efficiency were discussed. In addition, this paper summarizes the effect of various parameters on the removal of contaminants from water, the effect of MNPs@BC remediation on soil properties, and the removal/remediation mechanisms of the contaminants by MNPs@BC in water and soil. Moreover, the potential directions for future research and development of MNPs@BC have also been discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.