Abstract

A new series of electron-deficient porphyrins were prepared by attaching one or two N-methylated 2-, 3- or 4-pyridylethynyl groups to the 10,20-meso positions of (5,15-biphenylporphinato)zinc(II). Electrochemical studies showed significant changes in the reduction potentials of these porphyrins, and N-methyl-2-pyridylethyne is the strongest electron-withdrawing substituent in the series. UV-visible spectra demonstrated largely red-shifted absorptions, and N-methyl-4-pyridylethyne has the greatest impact to the porphyrin absorptions. Electrochemical, UV-visible and EPR results concluded that porphyrins Zn2 and Zn6 reversibly undergo two one-electron porphyrin-ring reductions to their anion radicals then dianions. The first reductions of porphyrins Zn1, Zn3, Zn4 and Zn5 were irreversible one-electron transfer processes. The instability of these reduction products was suggested to result from the eletrophilic attacks at the substituents.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call