Abstract

The isotypic carbides Ln4C7 (Ln = Ho, Er, Tm, Lu) were prepared by arc-melting of the elemental components, followed by annealing at 1300 °C. The positions of the metal and of some carbon atoms of the monoclinic crystal structure of LU4C7 were determined from X-ray powder data, and the last carbon positions were found and refined from neutron powder diffraction data: P21/c, a = 360.4(1), b = 1351.4(3), c = 629.0(2) pm, β = 104.97(2)°, Z = 2, R = 0.026 for 429 structure factors and 15 positional parameters. The structure contains isolated carbon atoms with octahedral lutetium coordination and linear C3-units, with C-C bond lengths of 132(1) and 135(1) pm. This carbide may therefore be considered as derived from methane and propadiene. The hydrolysis of LU4C7 with distilled water yields mainly methane and propine, while the hydrolyses of the corresponding holmium and erbium carbides resulted in relatively large amounts of saturated and unsaturated C2-hydrocarbons in addition to the expected products methane and propine. The structure comprises two-dimensionally infinite NaCl-type building elements, which are separated by the C3-units. It may be described as a stacking variant of a previously reported structure of HO4C7, now designated as the a-modification. The Lu4C7-type β -modification was obtained at higher temperatures. Its structure was refined by the Rietveld method from X-ray powder data to a residual R = 0.037 for 320 F values and 15 positional parameters. Lu4C7 is Pauli paramagnetic; β -HO4C7 and Er4C7 show Curie-Weiss behavior with magnetic ordering temperatures of less than 20 K.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call